Expert Insights

So the first thing that I really stress that people do, is that they actually go and watch some classes.  I think that’s the most important thing.  When they’re coming straight out of a post doc, or they’re coming straight out of the Research Centre, and then, they’re told they’re going to be lecturing 300 first year students, they’ve got to go and sit in the back of the lecture theatres for a few weeks.... when I came over from the UK to here, and the class sizes are about three or four times as big, it was just a real help to be able to see what worked and didn’t work  – how little time the students were on task in quite a few lectures.  Where the lecturer would just be talking and be oblivious to this.  I think people just learn a lot by seeing good things, but they also learn a lot by seeing quite bad things going on.

I want them to get the big picture about what analytical chemistry is about in terms of solving an analytical chemistry problem.  They need to know the big picture rather than just focussing on the measurement step.

I find it [teaching] enjoyable, and I think that if you’re enjoying teaching something then your passion and desire and enjoyment gets transmitted to the students.  It’s not necessarily easy to teach, but it’s satisfying and generally we want to inspire them to increase their level of intrinsic motivation to want to continue to study chemistry.

I think it’s a key teaching topic, also because it’s teaching students to look at data and to interpret data, to assess which part of that data is going to get them to the answer and which part is exquisite detail that they can come back to later on. 

Ions and ionic chemistry are essential to life and just about everything they will run across.

And it’s so essential, if you are in the middle of a discipline, to have a really well developed sense of what your colleagues around you are teaching, so that you can make connections.

[Analytical chemistry] is probably one of the things that’s easiest to tie back to their own experiences.  Because it’s very easy to link the idea of the importance of chemical measurement, is actually pretty easy to get across. You just talk about what is sports drug testing, road side testing, when was the last time you went to the doctor to get a path test.  These are all forms of analytical chemistry.  So I have a significant advantage over some people [teaching other topics] in being able to imbed it in their experiences.  Everybody has some kind of experience we can draw on to say, yeah that’s analytical chemistry.  The difficulty is of course to ensure that misconceptions don’t creep in.

They [students] reveal great misunderstandings about the molecular world. So the difficulties and limitations are as a result of not spending sufficient time on getting them to think about this world, and spending too much time on doing. You know, we’ve got to spend some time, but you can’t spend too much time, I think, on a lot of the ideas that we do teach, and doing calculations and things that, really, no one else does. It’s really something that’s done almost like it’s make-work-type stuff.

It is vitally important for their understanding of chemistry that they understand that molecules are three-dimensional things and that they have a spatial requirement in that they have a shape of their own and that shape will change.  They can't do higher level manipulations without an understanding of three-dimensional nature of molecules.

I remember when I was taught this, that the only definition we were given was Le Chatelier’s actual definition, or his principle, and I remember reading that language and going geez, that’s really hard to follow as a student, so I used to always try and present that and then break it down in to a more simple sort of version that I thought would be easier to understand.

Pages