I think it’s a key teaching topic, also because it’s teaching students to look at data and to interpret data, to assess which part of that data is going to get them to the answer and which part is exquisite detail that they can come back to later on.
Expert Insights
|
In the workshops, the workshop idea as we run them is that you are out and about and amongst the students all the time in those groups, seeing what’s going on in the groups, seeing how they’re answering their questions. They have set questions on sheets that they work through in groups and the groups of three just get one set. They’re all working on them together and you’re moving in and out and around among the groups and seeing how they’re going. In that circumstance you can quickly, having looked at three or four of your eight different groups, figure out where a particular issue would be and then that can be addressed on the board, it can be addressed with models or something like that. |
They struggle with the language of chemistry. So we sort of need to teach them the process and how to work out how to do these things. We know that their tendency is just to attempt to memorise reactions. Whereas if we can teach them to derive … find out what the nucleophile and the electrophile is then all they have to do is draw a curly arrow from the nucleophile to the electrophile, rather than trying to work out what the reaction is itself. |
Ions and ionic chemistry are essential to life and just about everything they will run across. |
It now does come down to the quality of the presentation in terms of what you put on the PowerPoint I suppose, cos we all use PowerPoint. But I try most lectures to switch that off and use the visualiser and write things down by hand, where I can see that something is missing on the PowerPoint, or if I think the students haven’t got a particular message, don’t understand a reaction, don’t know about a mechanism. I’m happy to stop, go to the visualiser and write it down at the correct sort of pace, by which they can actually write it down themselves. |
I find that some students pick up what the mole concept is from the idea of grouping numbers of things that are every day size. |
It’s continuous learning. I mean, what I used to try to say to students when I taught the acid-base stuff I’d say ‘look there are only about six types of problems and if you can solve one of them you can solve them all because they’re all the same.’ But what you’ve got to be able to do is look at the question and say to yourself ‘this is one of those types of questions therefore this is the way I should think about approaching it.’ So take the question, dissect it, decide what you’re being asked to do, decide what information you’re given, and then say ‘yeah that’s one of those types of questions, this is the way I should go about solving it.' If you can get that across to them, that it’s not a new universe every time you get a question, it’s simply a repeat universe of the same type of question... But many students tend to look at each problem as a new universe and start from the beginning again. Many students don’t see that there is a limited number of problems that can be asked on a certain topic. |
I think what I try to get students to see is that we use models and you use a model, while it works. Then when it doesn’t work you develop a more sophisticated model, and what we’re doing now is developing a more sophisticated model of the structure of the atom, of bonding between atoms. So they find that difficult, the fact that you’re putting aside the model you used previously and developing a more sophisticated one. I think that’s something, it just knocks their confidence a bit. I think we’ve got to convince them that, actually, what your teachers told you at school wasn't wrong, it’s just that this is more sophisticated, that science is all about building models to explain reality. |
I started lecturing before I did my Diploma of Education and I would have recommended to all of the lecturers to do it because it really helped me in my teaching. Mind you, I already had a bit of experience, I don’t know, you know, the chicken or the egg type thing. |
I like to approach chemistry as a different language, because it used symbols to convey ideas across, but they are not the reality. When we draw a little stick structure, alcohol does not exist as I’ve just drawn it, it’s a representation. |